Enhanced reduction of graphene oxide by means of charging and electric fields applied to hydroxyl groups.

نویسندگان

  • H Hakan Gürel
  • S Ciraci
چکیده

We present a first-principles study of the effects of charging and perpendicular electric fields on hydroxyl groups, both of which mediate the reduction of graphene oxide through the formation of H2O and H2O2. Starting with an investigation of the interaction between the hydroxyl groups and graphene, we determine the equilibrium binding geometry, binding energy, and the diffusion path with a minimum energy barrier and show that those equilibrium properties are strongly affected by external agents. While co-adsorbed H and O form bound OH, co-adsorbed H and OH in close proximity form H2O with almost no energy barrier. When negatively charged or subjected to a perpendicular electric field, the energy barrier between two OH co-adsorbed in close proximity is weakened or totally suppressed, forming an oxygen atom strongly bound at the bridge site, together with a water molecule. The water molecule by itself is very weakly bound to graphene and is prone to desorb from the surface, leading to the reduction of graphene oxide. It is therefore demonstrated that the reduction of graphene oxide is promoted to a large extent by negative charging or an applied perpendicular electric field, through the formation of weakly bound water molecules from hydroxyl groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Surface Polarized Graphene Oxide Quantum Dot Films for Flexible Nanogenerators

Abundant disorderly-distributed surface functional groups, such as hydroxyl, carboxyl, ether and amino groups, endow an isolated graphene oxide quantum dot (GOQD) the polar property due to the symmetry breaking, although the aggregated counterparts present no polarization owing to the random orientation. Here, flexible polarized films were fabricated using aggregated GOQDs with the assistance o...

متن کامل

Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction

In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...

متن کامل

Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution.

Graphene oxide (GO) is a highly effective adsorbent, and its absorbing capability is further enhanced through its in situ reduction with sodium hydrosulfite as the reductant. Acridine orange is the selected target to eliminate with GO as the adsorbent. Under identical conditions, GO without the in situ reduction showed a maximum adsorption capacity of 1.4 g g(-1), and GO with the in situ reduct...

متن کامل

Graphene oxide nanoribbons and their applications in supercapacitors

We report the enhanced capacitance of the Multi-Walled Carbon NanoTubes (MWCNTs) after a chemical unzipping process in concentrated sulfuric acid (H2SO4) and potassium permanganate (KMnO4). The effects of the test duration and temperature were investigated on the unzipping process of the MWCNTs to synthesize the graphene oxide nanoribbons. The SEM and TEM studies were carried out on untreated a...

متن کامل

Microbial Reduction of Graphene Oxide by ‎Lactobacillus Plantarum

   Here, we report that the reduced graphene oxide nanosheets were successfully synthesized using the ‎Lactobacillus plantarum biomass in a simple, environmentally friendly and scalable manner. We ‎produced graphene oxide by oxidization and exfoliation of graphite flakes with modified Hummer's ‎method and then reduced to reduced graphene oxide by using Lactobacillus plantarum biomass as a ‎...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 25 43  شماره 

صفحات  -

تاریخ انتشار 2013